Sustainable Energy Management Case Study: Monroe County, FL Energy Retrofit Project

New Partners for Smart Growth February 7, 2013

- Sustainable energy management
- Management systems
- Overview of ISO 50001 Energy Management Systems
- Case study: Monroe County, FL energy retrofit project
 - Examples of data analysis and monitoring using ISO 50001 methodology

Fixed & uncontrollable overhead
Price Volatility
Not core business/mission
Crisis management
Technology is silver bullet
Short term perspective

Management systems are tools used to address these, and other issues

Sustainable energy management is <u>**not</u>** a destination.....</u>

it is a *process*!

Quality – QMS ISO 9001:2008 *Quality Management Systems – Requirements*

Environmental – EMS ISO 14001:2004 Environmental Management Systems – Requirements with guidance for use

Energy – EnMS ANSI/MSE 2000:2008 *Management System for Energy*

ISO 50001:2011 Energy Management Systems – Requirements with guidance for use

Energy Management Systems – ANSI/MSE 2000, ISO 50001, others

A Management System for Energy provides an organized structure to incorporate Managerial and Technical elements to maximize benefits using the PLAN-DO-CHECK-ACT continuous improvement model.

© 2008 Georgia Tech Research Corporation. All Rights Reserved. Used with permission of GTRC.

- ISO appoints project committee PC 242 to develop standard
- The United States and Brazil are the Secretariat of PC 242
- There are 48 participating nations and 17 observing nations
- ISO 50001 published in June 2011
- PC 242 transitioned to a technical committee TC 242

First international meeting September 2008 in Washington, DC

- **Boundaries** physical or site limits and/or organizational limits as defined by the organization
- *Energy Baseline* quantitative reference providing a basis for comparison of energy performance
- **Energy Use** manner or kind of application of energy
- **Energy Consumption** quantity of energy applied
- **Energy Efficiency** ratio or other quantitative relationship between an output of performance, service, goods or energy, and an input of energy
- <u>Energy Performance</u> measurable results related to energy efficiency, energy use and energy consumption
- **Energy Performance Indicator (EnPI)** quantitative value or measure of energy performance, as defined by the organization

• *Energy policy* top management's official statement of the organization's commitment to managing energy

•**Cross-divisional management team** led by a representative who reports directly to management and is responsible for overseeing the implementation of the energy management system

• *Energy review* to assess current and planned energy use, energy sources and consumption and identify *significant energy uses* and opportunities for improvement

• **Baseline(s)** of the organization's energy use

•*Energy performance indicators* (EnPls) that are unique to the company and are tracked against the baseline to measure progress

•*Energy objectives and targets* for energy performance improvement at relevant functions, levels, processes or facilities within an organization

• Action plans to meet those targets and objectives

• Operating controls and procedures for significant energy uses

•*Measurement, management, and documentation* for continuous improvement for energy performance

•Internal audit of progress reported to management based on these measurements.

•*Management review* to determine the effectiveness of the EnMS and resulting energy performance improvements

Monroe County, FL - Energy Retrofit Project

- Jackson Square, Key West
- 4 buildings with an area of approximately 200,000 sq ft
- 3 of the buildings are served by a central chilled water plant
- 5 electric meters
- all systems operate 24/7

Energy Sources - electricity

The chilled water plant accounts for 30% of the total consumption

Cooling (the chilled water plant) identified as a significant energy use

Building	Ave rage De mand (kW)	Peak Demand (kW)	Energy (kWh)	Cost	Account Number	Meter Number
ChillerPlant	228	328	981,960	\$ 131,826	1065003-00	E000069849
Jefferson Annex	78	90	467,680	\$ 60,170	1065802-13	E000061561
Freeman Justice Center	145	150	752,760	\$ 97,650	1065002-00	E000061558
LesterBuilding	143	160	653,520	\$ 87,015	1065793-02	E000061504
Old Courthouse - Addition	95	108	468,840	\$ 61,814	1065797-10	E000061559
Totals for Jackson Square			3, 324, 760	\$ 438,474		

Project Selection Tool – (ECMs identified during audit - bundle ECMs to reach <u>target</u>)

Shaded cells are user input

Energy Conservation Measure	Demand Savings (kW)	Energy Savings (kWh)	Electric Cost Savings	CHW Savings (ton-hours)	CHW Cost Savings	Total Cost Savings	ECM Cost	Simple Payback (yr)
Lighting	17.9	140,228	\$ 17,473	-	\$-	\$ 17,473	\$ 66,999	3.8
Chilled waterplant	24.0	263,996	\$ 32,668	-	\$-	\$ 32,668	\$ 285,000	8.7
Retro-commissioning-Controls	10.0	211,930	\$ 24,885	231,832	\$ 10,471	\$ 35,356	\$ 170,500	4.8
Motors - VFDs	13.0	34,598	\$ 4,498	10,958	\$ 495	\$ 4,992	\$ 28,338	5.7
Envelope	-	1,940	\$ 220	8,650	\$ 391	\$ 610	\$ 4,600	7.5
TOTALS	64.9	652, 692	\$ 79,743	251,440	\$ 11,357	\$91,100	\$ 555,437	6.1

Ref No.	x	Building	Energy Conservation Measure	Description	Demand Savings (kW)	Energy Savings (kWh)	Electric Cost Savings	CHW Savings (ton-hours)	CHW Cost Savings	Total Cost Savings	ECM Cost	Simple Payback (yr)
1	х	LesterBuilding	Lighting	LightingRetrofits	3.4	13,908	\$ 1,882	-	\$-	\$ 1,882	\$ 7,873	4.18
2	х	Jefferson Annex	Lighting	LightingRetrofits	13.0	120,578	\$ 14,816	-	\$-	\$ 14,816	\$ 58,085	3.92
3	х	Freeman Justice Center	Lighting	LightingRetrofits	1.4	5,741	\$775	-	\$-	\$ 775	\$ 1,042	1.34
4		Old Courthouse	Lighting	LightingRetrofits	-	-	\$-	-	\$-	\$-	\$-	-
5	х	Freeman Justice Center	Motors - VFDs	Prem motors & VFD	10.0	16,538	\$ 2,319	10,958	\$ 495	\$ 2,814	\$ 11,500	4.09
6	х	Freeman Justice Center	Retro-commissioning-Controls	Minimum OA schedule	-	1,420	\$ 161	86,450	\$ 3,905	\$ 4,065	\$ 7,500	1.84
7	х	LesterBuilding	Motors - VFDs	Prem motors & VFDs	3.0	18,060	\$ 2,178	-	\$-	\$ 2,178	\$ 16,838	7.73
8	х	ChillerPlant	Chilled waterplant	VFD on cooling tower fan	1.0	29, 166	\$ 3,599	-	\$-	\$ 3,599	\$ 8,950	2.49
9	х	ChillerPlant	Chilled water plant	VFDs on CHW pumps	2.9	58, 332	\$ 7,199	-	\$-	\$ 7,199	\$ 8,950	1.24
10		ChillerPlant	Retro-commissioning-Controls	Other ECM savings	-	-	\$-	-	\$-	\$-	\$-	-
11		ChillerPlant	Chilled water plant	Replace both chillers	-	-	\$-	-	\$-	\$-	\$-	-
12	х	Courthouse Annex	Retro-commissioning-Controls	Schedule AHU-1	-	13,286	\$ 1,504	57,312	\$ 2,589	\$ 4,093	\$ 1,000	0.24
13	х	LesterBuilding	Retro-commissioning-Controls	Demand controlled vent	-	36,450	\$ 4,126	-	\$-	\$ 4,126	\$ 8,000	1.94
14	х	LesterBuilding	Retro-commissioning-Controls	Setback (6hours)	-	63, 370	\$ 7,173	-	\$-	\$ 7,173	\$ 7,000	0.98
15	х	Jefferson Annex	Retro-commissioning-Controls	Setback (6hours)	-	17,530	\$ 1,984	26,220	\$ 1,184	\$ 3,169	\$ 10,000	3.16
16	х	Old Courthouse	Retro-commissioning-Controls	Setback (6hours)	-	17,530	\$ 1,984	21,850	\$ 987	\$ 2,971	\$ 10,000	3.37
17	х	Old Courthouse	Retro-commissioning-Controls	Recommission water pumps	-	8,333	\$ 943	-	\$-	\$ 943	\$ 2,000	2.12
18	х	Freeman Justice Center	Retro-commissioning-Controls	Setback (6hours)	-	19,011	\$ 2,152	-	\$-	\$ 2,152	\$ 10,000	4.65
19	х	Freeman Justice Center	Envelope	Window film on westside	-	1,940	\$ 220	8,650	\$ 391	\$ 610	\$ 4,600	7.54
20		Jackson Square	Retro-commissioning-Controls	Additional controls-dashboard	-	-	\$-	-	\$-	\$-	\$-	-
21	х	ChillerPlant	Chilled water plant	Replace one chiller	20.2	176,497	\$ 21,871	-	\$-	\$ 21,871	\$ 267,100	12.21
22	х	LesterBuilding	Retro-commissioning-Controls	Additional controls-dashboard	4.5	14,000	\$ 1,987	-	\$-	\$ 1,987	\$ 46,000	23.15
23	х	Freeman Justice Center	Retro-commissioning-Controls	Additional controls-dashboard	4.5	8,750	\$ 1,393	16,000	\$ 723	\$ 2,115	\$ 23,000	10.87
24	х	Old Courthouse	Retro-commissioning-Controls	Additional controls-dashboard	-	3,500	\$ 396	8,000	\$ 361	\$ 758	\$ 17,250	22.77
25	х	Jefferson Annex	Retro-commissioning-Controls	Additional controls	1.0	8,750	\$ 1,080	16,000	\$ 723	\$ 1,803	\$ 28,750	15.95

Life Cycle Cost Analysis – NIST Handbook 135

Also calculates the greenhouse gas emissions reduction resulting from energy savings

Location:	Jackson Squar	e - Key West, I	FL				
ECMs:	Lighting retrofits motors and VF	s - chilled water Ds - envelope n	plant retrofits - r	etro-commissi	ioning	K	
	Lester Building	g - Jefferson Anı	nex - Freeman J	ustice Center	- Old		
Bldgs:		Courtho	ouse - Chiller Pla	nt			
INVESTMENT	COSTS					Economic	Param eters
	Construction:	\$ 555,437]			Base Year:	2,011
	Supervision:	\$ -	0.0%		Dis	count Rate:	3.0%
Design - (Contingency:	\$ -				Region:	3
	Salvage				F	Project Life:	15
Tota	IInvestment:	\$ 555,437	-				
ENERGY SAV	INGS (COSTS)					
	Units	Average Cost per Unit	Annual Reduction	Annual Energy Savings (MMBtu)	Annual Cost Savings	Discount Factor	Life-Cycle Discounted Savings
Electricity	kWh	\$ 0.1210	753,016	2,570	\$ 91,100	11.610	\$ 1,057,668
Gas	ccf	\$ -	-	-	\$-	-	\$-
Fuel Oil	gallon	\$ -	-	-	\$-	-	\$-
				2,570	\$ 91,100		\$ 1,057,668
	IETRICS Tota	alInvestment	\$ 555,437		Total	Investment	\$ 555,437
	Annual Ene Annual Non-Ene	ergySavings: rgySavings:	\$ 91,100	D Discou	iscounted Energ	gySavings: ySavings:	\$ 1,057,668 \$
	Total Anr	nual Savings:	\$ 91,100		Total Discounte	ed Savings:	\$ 1,057,668
	Simple Payb	ack (years):	6.10	Saving	gs To Investn	nent Ratio:	1.90
Total Site Annua Energ	al Energy Savings gy Savings to	s (MVBtu): In vestment:	2570 4.63	M M Btu/(\$1,0	Adjusted Ir 200)	nternal Rate of AIRR:	f Return 7.5%

Baseline Greenhouse Gas Emissions

Energy Type	Unit	Quantity	Energy (MMbtu)	МТ СО2	kg CH4	kg N2O	MT CO2e
Electricity	kWh	753,016	2,570	450	16	6	453
Natural Gas	ccf	-	-	-	-	-	-
Fuel Oil #2	US gall.	-	-	-	-	-	-
Propane	US gall.	-	-	-	-	-	-
	Totals		2,570	450	16	6	453

Example ECM – Central Chiller Plant

During an interview with the Director of Public Works, he expressed his primary concern was the sustainability of the chilled water system during a power outage.

Existing Situation

○24/7 operation

- Serves key buildings
- Reliability critical
- Constant speed chillers, pumps, tower fans

<u>Emergency generator not able to start system</u>

Measurement & Verification – Monitoring Performance

Energy Baseline is a linear regression model with independent variables: CDD – Cooling Degree Days

Measurement & Verification – Baseline Period

Trend plot of Actual and Predicted energy consumption

Measurement & Verification – Option C, Whole Building

Post retrofit performance

Baseline Model Used to Calculate Savings from Project

Month	NOD	CDD	Predicted ^{Baseline} (kWh)	Actual (kWh)	Savings (kWh)	Cost Saving		Percent Savings
Feb-12	30	272	74,197	45,000	29,210	\$	3,337	39%
Mar-12	32	369	85,110	47,880	37,244	\$	4,255	44%
Apr-12	29	339	77,488	39,000	38,501	\$	4,399	50%
May-12	30	462	88,620	48,120	40,512	\$	4,629	46%
Jun-12	32	545	98,465	55,680	42,798	\$	4,890	43%
Jul-12	29	528	91,822	52,680	39,142	\$	4,472	43%
Aug-12	31	570	98,578	58,920	39,658	\$	4,531	40%
Sep-12	31	535	95,921	57,240	38,681	\$	4,419	40%
Oct-12	30	490	90,721	52,200	38,521	\$	4,401	42%
Nov-12	30	198	68,552	40,560	27,992	\$	3,198	41%
Dec-12	31	270	75,802	44,880	30,922	\$	3,533	41%
Jan-13								
To Date	335	4,579	945,277	542,160	403,181	\$	46,064	43%

Jackson Square Energy Project Savings at CHW Plant

Baseline Regression Mode – Determining Energy Savings

Post-Retrofit Regression to Monitor System Performance – Introduce Energy Performance Indicator (EnPI) EnPI = (Actual/Predicted) consumption

Month	NOD	CDD	Predicted Post-retofit (kWh)	Actual (kWh)	EnPI (post- retrofit)
Feb-12	30	272	42,625	45,000	1.06
Mar-12	32	369	48,863	47,880	0.98
Apr-12	29	339	44,485	39,000	0.88
May-12	30	462	50,834	48,120	0.95
Jun-12	32	545	56,463	55,680	0.99
Jul-12	29	528	52,642	52,680	1.00
Aug-12	31	570	56,514	58,920	1.04
Sep-12	31	535	55,002	57,240	1.04
Oct-12	30	490	52,029	52,200	1.00
Nov-12	30	198	39,413	40,560	1.03
Dec-12	31	270	43,552	44,880	1.03
Jan-13					
To Date	335	4,579	542,423	542,160	1.00

Jackson Square CHW Plant Post-Retrofit EnPl

Monitor Performance with EnPI Control Chart

- Sustainable Energy Management is a continual process
- Management Systems provide a framework using the Plan-Do-Check-Act process
- Quantitative tools provide a means to ensure continued *energy performance*

Thank You!

Questions

Mark Imel, PE CEM, CP EnMS-Industrial Energy Services Technical Director – EB 816-360-2739

BACKUP SLIDES

Baseline Period Trend Plot

Addition of Energy Performance Indicator (EnPI) – (Actual/Predicted)

Measurement & Verification – Baseline Period

Control chart of EnPl

Solution

Replace chiller with unit using frictionless compressors

•Technology uses magnetic bearings which eliminates friction

- System is run without oil in the refrigerant
- Very good efficiency over a range of loading – low NPLV
- Quiet operation
- Multiple chiller manufacturers incorporate these compressors

Energy Project Implementation

Investment Grade Audit

(identify ECMs)

Project Development

(bundle ECMs into project)

Measurement & Verification

Investment Grade Audit – Project Development

Collect and review background information

Site investigation

Analysis of Energy Conservation Measures (ECM)

Develop list of viable ECMs

Develop energy project within budget constraints

Building plans

Past energy studies

Bing.com/maps views

Master plan information

Utility bills

Utility tariffs

•Time of use - Demand vs. Energy Charge - Ratchets •Identify Proper Rate (Is there a minimum demand charge, ratchet, power factor penalty, declining block, etc.?)

What is the annual cost to run 10, 100 watt lighting fixtures? It depends on <u>when</u> and <u>where</u>.

Incremental Cost of 1 kW

(10 hours per weekday)

Utility	D	aytime	Ni	ghttime
KCPL	\$	156.39	\$	98.97
SCE	\$	483.24	\$	171.43

Sample Utility Bill Analysis

HDR's Analysis Includes:

- Energy consumption by by units of billing
- Energy consumption in in common units of energy
- Energy costs
- Index of energy consumption and energy cost by area
- Baseline development (by averaging or regressions)
- Green house gas baselines
- Weather correlations

Site Investigation

•Interviews with building occupants – facility staff

- Determine proper schedules and operating conditions
- Identify chronic problems

•Gather information on relevant systems

- Envelope
- Mechanical and electrical
- Lighting

•Measurements (light levels, amp draw, temperature, etc.)

One time – trend logging

Trend Data Example – Rooftop unit with variable air flow & economizer

Trend Data Example – Rooftop unit with variable air flow & economizer

Energy Conservation Measure Analysis

Varying levels of analysis available based on the complexity of the ECM

- Engineering calculations (lighting, constant loads, etc.)
 kWh_{saved} = (kW_{old} - kW_{new}) * (hours of operation)
- Bin calculations (simple calculations that vary by outside temperature)
- Whole building energy simulation (eQUEST - FEDS)

73.8

73.3

72.8

72.3

71.8

71.3

70.8

70.3

69.8

0.0

62.5

57.5

52.5

47.5

42.5

37.5

32.5

27.5

22.5

1.000

848

884

674

397

261

98

31

4

55.6

56.9

58.1

60.0

60.0

60.0

60.0

60.0

60.0

0.0

18.1

16.4

14.6

12.3

11.8

11.3

10.8

10.3

9.8

0.0

199.375

180.125

160,875

134,750

129,250

123,750

118.250

112,750

107,250

16.615

12.729

11,851

7,568

4,276

2,692

966

291

36

18.276

14.002

13,036

8,325

4,704

2,961

1.06

1,645

1,260

1,173

749

423

266

Energy Modeling

Project Development

Live demonstration of Project Selection Tool with Life Cycle Cost

Measurement and Verification

International Performance Measurement and Verification Protocol IPMVP

Identifies 4 M&V Options

Option A – Partially Measured Retrofit Isolation

- Used when savings can be determined by short-term data collection, engineering calculations and stipulated factors.
- Usually pre- and post- retrofit measures
- Good application are loads that are constant and have a defined schedule
- Examples include:
 - One for one lighting retrofits
 - Replacing standard efficiency motors with premium efficiency

Measurement and Verification

Option B – Retrofit Isolation

- Generally done at the system level
- Requires continuous measurement to provide long term savings verification
- Best practice is to monitor before and after retrofit
- Examples include:
 - Replacement chiller (monitor the performance metric of kW/ton)
 - Variable frequency drive on pump or fan motors
 - Boiler replacement (monitor efficiency output versus input)

Option C – Whole Facility Energy Usage

- Savings based on actual consumption as measured by the utility meter
- Savings determined from utility bills and/or regression models
- Used when multiple ECMs are present with high interaction

Measurement and Verification

Option D – Calibrated Simulation

- Primarily a whole-building method but can be used at the system level
- Savings based on the results of a calibrated model
- Linking simulation inputs to baseline and post-installation conditions completes the calibration
- Requires considerable expertise to calibrate models

We will now take a look at some of the energy analysis and M&V used for the Monroe County, FL project. Although calibrated models were used to determine the savings for some ECMs, the M&V methodology chosen was Option C – Whole Facility Energy Use

Measurement & Verification – Baseline Period

Trend plot of Actual and Predicted energy consumption with EnPI

Monitoring Future Performance

- Continue to use the original baseline model to track savings attributed to the project
- The Post-retrofit baseline model can be used to monitor performance

ЮR

Incorporating an Energy Performance Indicator (EnPI)

HR

Control Chart for Monitoring EnPl

Pre-Retrofit Baseline Used for Savings Calculations

Month	NOD	CDD	Predicted (kWh)	Actual (kWh)	Savings (kWh)	Cost Savings	EnPI
Feb-12	30	272	74,210	45,000	29,210	\$ 3,337	0.61
Mar-12	32	369	85,124	47,880	37,244	\$ 4,255	0.56
Apr-12	29	339	77,501	39,000	38,501	\$ 4,399	0.50
May-12	30	462	88,632	48,120	40,512	\$ 4,629	0.54
Jun-12	32	545	98,478	55,680	42,798	\$ 4,890	0.57
To Date	153	<i>1,9</i> 88	423,944	235,680	188,264	\$ 21,510	0.56

Energy Project Savings

ЮR

Continuous Monitoring of Post-Retrofit Performance

Month	NOD	CDD	Predicted Actual (kWh) (kWh)		EnPI						
Feb-12	30	272	42,132	45,000	1.07						
Mar-12	32	369	47,707	47,880	1.00						
Apr-12	29	339	43,400	39,000	0.90						
May-12	30	462	48,819	48,120	0.99						
Jun-12	32	545	53,899	55,680	1.03						

Post-Retrofit EnPl

ЮR

Monroe County, FL - Energy Retrofit Project

Four buildings with a total area of approximately 200,000 sq ft

Three buildings served by a central chilled water plant

Five electric meters (each building and the chilled water plant)

Most of the HVAC systems were on a central building automation system

All HVAC systems operated in a continuous manner – no scheduling

Post-retrofit Operation

Post-Retrofit Operation

🕆 Envision for BACtalk - ESSI	/JXNSQARE		LogMeIn			×		
BACtalk Edit View Tools Help								
			JACK	SON	I SOU	ARE		Outside Air
			Co	urthou		ov		86 °F -1 %rb
				Floor	2 8 4	CA		
	-Bida, Electricity D	emand —	Wed	riours Inesday, 6/13	2012 7:35:29	PM	– Cell Twr Electricity Dmnd –	
	37 KW D	etails					5 KW Details	< Previous
				Flo	or 3 Floo	r Plan		
		Deem	Cotuciut	Cumphi	Occurried	Fan		
		Temp/Hum	Cig/Htg	Supply Temp	Status	Status		
	AHU-3-1	78 °F/51 %	78 °F	77 °F	Unoccupied	On		
	AHU-3-2	77 °F / 49 %	78 °F	73 °F	Unoccupied	Off		
	AHU-3-3	76 °F / 57 %	78 °F / 65 °F	66 °F	Unoccupied	Off	Floor 3	
				Flo	or 4 Floo	r Plan		
		Room	Setpoint	Supply	Occupied	Fan		
		Temp	Clg/Htg	Temp	Status	Status		
	AHU-4-1	77 °F / 46 %	76 °F	58 °F	Unoccupied	On	Hallway	
	AHU-4-2	73 °F / 50 %	78 °F	72 °F	Unoccupied	Off	Courtroom	
	FCU-4-1	/9-F/50%	/8 F / 65 F	67 F	Unoccupied	Un	Judge's Chambers	
				Ro	oof Floo	r Plan		
		Fan Status	Supply Temp	Occupied Status				
	OA AHU-1	Off	83 °F	Unoccupied				
		Supply Wtr Temp	Return Wtr Temp	Flow Status	– Diant Floctr	icity Doman	d	
	CHW System	45 °F	50 °F	On	53 KW	Details		
					L			
etart	r BáCtalk -							7:35 PM
	I DACIDIN							

Incorporating an Energy Performance Indicator (EnPI)

HR

Control Chart for Monitoring EnPl

Monroe County – Measurement & Verification

Chiller plant post-retrofit performance

Month	Predicted (kWh)	Actual (kWh)	Savings (kWh)	Savings (kW)	Cost Savings	EnPI
Feb-12	74,210	45,000	29,210	-	\$ 3,337.26	0.60
Mar-12	85,124	47,880	37,244	-	\$ 4,255.14	0.56
Apr-12	77,501	39,000	38,501	32.0	\$ 4,637.04	0.50
May-12	88,632	48,120	40,512	43.0	\$ 4,948.78	0.54
Total	325,466	180,000	145,466	75.0	\$ 17,178.22	0.55